CHANGES meeting in Poland Course on probabilistic risk assessment

22-23 September, Stryszawa near Krakow, Poland

LANDSLIDE SUSCEPTIBILITY AND HAZARD ASSESSMENT

Paola Reichenbach

Paola.Reichenbach@irpi.cnr.it CNR-IRPI, Perugia, Italy

DEFINITION OF THE PROBLEM

LANDSLIDE SUSCEPTIBILITY

PROBABILITY OF LANDSLIDE SIZE

TEMPORAL PROBABILITY

LANDSLIDE HAZARD

FINAL REMARKS

CHANGES: Course on probabilistic risk assessment 22-23 September 2011, Stryszawa, Poland

Pr**Engineering**le l**Geologys**

La Conchita, California Photo: Robert L. Schuster, USGS

Predi**Applied**Itiple Geomorphology

Inventory map for a portion of the Collazzone area, Umbria. CNR-IRPI

SINGLE vs. MULTIPLE LANDSLIDES

Landslide hazard is the probability of occurrence in a specified period and within a given area of a potentially damaging landslide of a given magnitude.

The definition incorporates the concepts of location (where?), time (when, or how frequently?) and magnitude (how large?).

(Guzzetti et al. 1999, 2005)

LANDSLIDE HAZARD

$H_L = P [A_L \ge a_L \text{ in a time interval t, given}$ { morphology, lithology, structure, land use, ... }.

- Probability of landslide size, a proxy for magnitude
- **Probability of temporal occurrence of landslides**

Probability of spatial occurrence of landslides (landslide susceptibility)

LANDSLIDE HAZARD ASSESSMENT

Landslide susceptibility is the likelihood of a landslide occurring in an area on the basis of local terrain conditions. (Brabb, 1984)

It is the degree to which a terrain can be affected by slope movements, i.e., an estimate of "where" landslides are likely to occur.

Susceptibility does NOT consider the temporal probability of failure (i.e., when or how frequently landslides occur), nor the magnitude of the expected landslide (i.e., how large or destructive the failure will be).

LANDSLIDE SUSCEPTIBILITY

The spatial probability of landslides, also known as susceptibility, is the probability that a region will be affected by landslides given a set of terrain conditions

S = P [F is true, given { morphology, lithology, structure, land use, ... }]

 $S = P[F | v_1(r), v_2(r), ..., v_m(r)]$

SPATIAL PROBABILITY

Several methods and techniques for evaluating landslide susceptibility have been proposed in the literature. Difference are mainly due to:

A mapping unit is a portion of the land surface containing a set of ground conditions which differ from the adjacent units across definable boundaries

A domain that maximizes internal homogeneity and between units heterogeneity

GRID CELL

GRID-CELLS DEVIDE THE TERRITORY INTO REGULAR SQUARES OF PRE-DEFINED SIZE

EACH GRID-CELL IS ASSIGNED A VALUE FOR EACH THEME

PREFERRED BY RASTER-BASED GIS USERS

MAPPING UNITS

A grid-based debris flow map for the San Mateo County, California, Mark R.K., 1992

irpi

From: Carrara and others, 1991

SLOPE-UNITS PARTITION THE TERRITORY INTO REGIONS BETWEEN DRAINAGE AND DIVIDE LINES

AUTHOMATICALLY DERIVED FROM DTM

BEAR A PHYSICAL RELATIONSHIP WITH SLOPES, WHERE MASS MOVEMENTS TAKE PLACE

MAPPING UNITS

irpi

Italian Municipality boundaries

ADMINISTRATIVE BOUNDARIES (REGIONS, PROVINCES, MUNICIPALITIES)

> USED IN A SMALL SCALE EVALUATION

MAPPING UNITS

Methods can be qualitative if they portray the susceptibility zoning in descriptive terms; or quantitative if they produce numerical estimates.

Direct methods map landslide susceptibility, in the field, from the aerial photographs or from satellite images. (Most commonly it is associated with the production of a landslide inventory map).

Indirect methods are essentially stepwise. They require: (i) the recognition and mapping of <u>landslides</u> over a target region or a subset of it (ii) the identification and mapping of the <u>physical factors</u> which are directly or indirectly correlated with slope instability (iii) an estimate of the relative <u>contribution</u> of the instability factors in generating slope failures, (iv) the <u>classification</u> of the land surface into domains of different levels of susceptibility, and (v) the assessment of the <u>model performance</u>.

LANDSLIDE MODELLING

	Direct	Indirect	Qualitative	Quantitive
Geomorphological mapping	\checkmark		\checkmark	
Heuristic (index-based)		\checkmark	\checkmark	
Analysis of inventories		\checkmark		\checkmark
Statistical modelling		\checkmark		\checkmark
Process based (conceptual)		\checkmark		\checkmark

LANDSLIDE MODELLING

	Geomorphologic mapping	Analysis of inventories	Index based	Statistically based	Physically based
Grid cell		\checkmark	\checkmark	\checkmark	\checkmark
Terrain units	\checkmark			\checkmark	
Unique condition units			\checkmark	\checkmark	
Slope units				\checkmark	
Topographic units					\checkmark
Administrative boundary		\checkmark	\checkmark	\checkmark	

TERRAIN UNITS vs MODELS

THEMATIC INFORMATION

CHANGES: Course on probabilistic risk assessment 22-23 September 2011, Stryszawa, Poland

CHANGES: Course on probabilistic risk assessment 22-23 September 2011, Stryszawa, Poland

The Collazzone area extends for about 78.8 km² in central Umbria, with elevations ranging from 145 to 634.

THE COLLAZZONE AREA

CHANGES

CHANGES: Course on probabilistic risk assessment 22-23 September 2011, Stryszawa, Poland

